A. \(\frac{\sqrt{21}a}{7}.\)
B. \(\frac{\sqrt{21}a}{14}.\)
C. \(\frac{\sqrt{2}a}{4}.\)
D. \(\frac{\sqrt{2}a}{2}.\)
B
\(C'M \cap \left( {A'BC} \right) = C\), suy ra \(\frac{{d\left( {M,\left( {A'BC} \right)} \right)}}{{d\left( {C',\left( {A'BC} \right)} \right)}} = \frac{{C'M}}{{C'C}} = \frac{1}{2}\).
Ta có \({V_{C'.A'BC}} = \frac{1}{3}{V_{ABC.A'B'C'}} = \frac{1}{3}.C'C.{S_{\Delta ABC}} = \frac{1}{3}.a.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 3 }}{{12}}\).
Lại có \(A'B = a\sqrt 2 ,CB = a,A'C = a\sqrt 2 \Rightarrow {S_{A'BC}} = \frac{{{a^2}\sqrt 7 }}{4}\)
Suy ra \(d\left( {C',\left( {A'BC} \right)} \right) = \frac{{3{V_{C'.A'BC}}}}{{{S_{\Delta A'BC}}}} = \frac{{3.\frac{{{a^3}\sqrt 3 }}{{12}}}}{{\frac{{{a^2}\sqrt 7 }}{4}}} = \frac{{a\sqrt {21} }}{7}\)
Vậy \(d\left( {M,\left( {A'BC} \right)} \right) = \frac{1}{2}d\left( {C',\left( {A'BC} \right)} \right) = \frac{1}{2}.\frac{{a\sqrt {21} }}{7} = \frac{{a\sqrt {21} }}{{14}}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247