Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 4cm. Gọi lần lượt là thể tích của khối tròn xoay hình thành khi quay tam giác ABC quan

Câu hỏi :

Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 4cm. Gọi \({V_1},\,\,{V_2},\,\,{V_3}\) lần lượt là thể tích của khối tròn xoay hình thành khi quay tam giác ABC quanh AB, AC và BC. Trong các kết luận sau, kết luận nào đúng?

A. \({V_1} > \,{V_2} > \,{V_3}\)

B. \({V_2} > \,\,{V_1} > \,\,{V_3}\)

C. \({V_3} > \,\,{V_1} > \,\,{V_2}\)

D. \({V_3} = \,\,{V_1} + \,\,{V_2}\)

* Đáp án

A

* Hướng dẫn giải

\(\begin{array}{l}BC = \sqrt {A{B^2} + A{C^2}}  = \sqrt {{3^2} + {4^2}}  = 5\\\dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{B^2}}} + \dfrac{1}{{A{C^2}}} = \dfrac{1}{{{3^2}}} + \dfrac{1}{{{4^2}}}\\ \Rightarrow AH = 2,4\end{array}\)

Thể tích của khối tròn xoay khi cho tam giác ABC quay quanh AB là:

\({V_1} = \dfrac{1}{3}\pi {.4^2}.3 = 16\pi \left( {c{m^3}} \right)\)

Thể tích của khối tròn xoay khi cho tam giác ABC quay quanh AC là:

\({V_2} = \dfrac{1}{3}\pi {.3^2}.4 = 12\pi \left( {c{m^3}} \right)\)

Thể tích của khối tròn xoay khi cho tam giác ABC quay quanh BC là:

\({V_3} = \dfrac{1}{3}\pi .2,{4^2}.5 = 9,6\pi \left( {c{m^3}} \right)\)

Do đó: \({V_3} < {V_2} < {V_1}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK1 môn Toán 12 năm 2020 trường THPT Thủ Đức

Số câu hỏi: 40

Copyright © 2021 HOCTAP247