A. \({V_1} > \,{V_2} > \,{V_3}\)
B. \({V_2} > \,\,{V_1} > \,\,{V_3}\)
C. \({V_3} > \,\,{V_1} > \,\,{V_2}\)
D. \({V_3} = \,\,{V_1} + \,\,{V_2}\)
A
\(\begin{array}{l}BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{3^2} + {4^2}} = 5\\\dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{B^2}}} + \dfrac{1}{{A{C^2}}} = \dfrac{1}{{{3^2}}} + \dfrac{1}{{{4^2}}}\\ \Rightarrow AH = 2,4\end{array}\)
Thể tích của khối tròn xoay khi cho tam giác ABC quay quanh AB là:
\({V_1} = \dfrac{1}{3}\pi {.4^2}.3 = 16\pi \left( {c{m^3}} \right)\)
Thể tích của khối tròn xoay khi cho tam giác ABC quay quanh AC là:
\({V_2} = \dfrac{1}{3}\pi {.3^2}.4 = 12\pi \left( {c{m^3}} \right)\)
Thể tích của khối tròn xoay khi cho tam giác ABC quay quanh BC là:
\({V_3} = \dfrac{1}{3}\pi .2,{4^2}.5 = 9,6\pi \left( {c{m^3}} \right)\)
Do đó: \({V_3} < {V_2} < {V_1}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247