Bất phương trình có nghiệm là bao nhiêu?

Câu hỏi :

Bất phương trình \({\log _{{1 \over 3}}}{{3x - 1} \over {x + 2}} < 1\) có nghiệm là bao nhiêu?

A. \(x = {3 \over 4}\)

B. x = 4

C. \(x \in ( - \infty ; - 2) \cup \left( {{5 \over 8}; + \infty } \right)\)

D. \(x \in ( - 9;2) \cup (8; + \infty )\)

* Đáp án

C

* Hướng dẫn giải

Điều kiện: \(\dfrac{{3x - 1}}{{x + 2}} > 0\)

\(\Leftrightarrow x \in \left( { - \infty ; - 2} \right) \cup \left( {\dfrac{1}{3}; + \infty } \right)\)

Khi đó ta có: \({\log _{\dfrac{1}{3}}}\dfrac{{3x - 1}}{{x + 2}} < 1\)

\(\Leftrightarrow \dfrac{{3x - 1}}{{x + 2}} > \dfrac{1}{3} \\\Leftrightarrow \dfrac{{8x - 5}}{{3\left( {x + 2} \right)}} > 0 \\ \Leftrightarrow x \in \left( { - \infty ; - 2} \right) \cup \left( {\dfrac{5}{8}; + \infty } \right)\)

Kết hợp điều kiện: \(x \in ( - \infty ; - 2) \cup \left( {\dfrac{5}{8}; + \infty } \right)\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK1 môn Toán 12 năm 2020 trường THPT Tân Hiệp

Số câu hỏi: 40

Copyright © 2021 HOCTAP247