Tìm giá trị của a để hàm liên tục tại x_0=0

Câu hỏi :

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{e^{ax}} - 1}}{x} & khi\,\,x \ne 0\\\frac{1}{2} & khi\,\,x = 0\end{array} \right.\) . Tìm giá trị của a để hàm số liên tục tại \({x_0} = 0\)

A. \(a = 1\)

B. \(a = \frac{1}{2}\)

C. \(a =  - 1\)

D. \(a =  - \frac{1}{2}\)

* Đáp án

B

* Hướng dẫn giải

Tập xác đinh: \(D = \mathbb{R}\)

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{ax}} - 1}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{ax}} - 1}}{{ax}}.a = a\)

\(f\left( 0 \right) = \frac{1}{2}\) hàm số liên tục tại \({x_0} = 0\) khi và chỉ chi \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a = \frac{1}{2}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Thi Online Đề thi thử THPT Quốc gia 2018 môn Toán

Số câu hỏi: 50

Copyright © 2021 HOCTAP247