Tìm bán kính của mặt cầu (S) đi qua ba điểm A, B, C và có tầm nằm trên mặt phẳng (Oxy)

Câu hỏi :

Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm \(A\left( {1;2; - 4} \right),\,\,B\left( {1; - 3;1} \right),\,\,C\left( {2;2;3} \right)\). Tính đường kính l của mặt cầu (S) đi qua ba điểm trên và có tâm nằm trên mặt phẳng (Oxy)

A. \(l = 2\sqrt {13} \)

B. \(l = 2\sqrt {41} \)

C. \(l = 2\sqrt {26} \)

D. \(l = 2\sqrt {11} \)

* Đáp án

C

* Hướng dẫn giải

Gọi tâm mặt cầu là \(I\left( {x;y;0} \right)\)

\(\left\{ \begin{array}{l}IA = IB\\IA = IC\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 2} \right)}^2} + {4^2}}  = \sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y + 3} \right)}^2} + {1^2}} \\\sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 2} \right)}^2} + {4^2}}  = \sqrt {{{\left( {x - 2} \right)}^2} + {{\left( {y - 1} \right)}^2} + {3^2}} \end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {y - 2} \right)^2} + {4^2} = {\left( {y + 3} \right)^2} + {1^2}\\{x^2} - 2x + 1 + 16 = {x^2} - 4x + 4 + 9\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}10y = 10\\2x =  - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 2\\y = 1\end{array} \right. \Rightarrow l = 2R = 2\sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 1} \right)}^2} + {4^2}}  = 2\sqrt {26} \)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Thi Online Đề thi thử THPT Quốc gia 2018 môn Toán

Số câu hỏi: 50

Copyright © 2021 HOCTAP247