Có bao nhiêu giá tri thực của tham số m để đồ thị hàm số \y = {x^4} - 2m{x^2} + m - 1 có ba điểm cực trị

Câu hỏi :

Có bao nhiêu giá tri thực của tham số m để đồ thị hàm số \(y = {x^4} - 2m{x^2} + m - 1\) có ba điểm cực trị tạo thành một tam giác có bán kính đường tròn ngoại tiếp chúng bằng 1?

A. 1

B. 2

C. 3

D. 4

* Đáp án

B

* Hướng dẫn giải

\(y' = 4{x^3} - 4mx = 4x({x^2} - m)\)

Vậy hàm số có 3 điểm cực trị khi m>0

Khi đó ba điểm cực trị của đồ thị hàm số là:

\(A(0;m - 1),\,B( - \sqrt m ; - {m^2} + m - 1),\,C(\sqrt m ; - {m^2} + m - 1)\)

\(AB = AC = \sqrt {{m^4} + m} ;\,\,BC = 2\sqrt m \)

Ta có: \({S_{ABC}} = \frac{1}{2}\left| {\left( {{x_B} - {x_A}} \right)\left( {{y_C} - {y_A}} \right) - \left( {{x_C} - {x_A}} \right)\left( {{y_B} - {y_A}} \right)} \right|\)

\( = \frac{1}{2}\left| {\left( { - \sqrt m .\left( { - {m^2}} \right)} \right) - \sqrt m .\left( { - {m^2}} \right)} \right| = {m^2}\sqrt m \,\)

Bán kính đường tròn ngoại tiếp:

\(R = \frac{{AB.AC.BC}}{{4{S_{ABC}}}} = \frac{{({m^4} + m).2\sqrt m }}{{4{m^2}\sqrt m }} = 1 \Leftrightarrow {m^3} - 2m + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = \frac{{\sqrt 5  - 1}}{2}\end{array} \right.\)

Vậy có 2 giá trị thực m thỏa mãn yêu cầu bài toán.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Thi Online Đề thi thử THPT Quốc gia 2018 môn Toán

Số câu hỏi: 50

Copyright © 2021 HOCTAP247