A. \(d = \frac{1}{2}a.\)
B. \(d = \frac{1}{4}a.\)
C. d = a
D. \(d = \frac{{\sqrt 2 }}{2}a.\)
A
Gọi I là trung điểm của đoạn AD.
Ta có AI // BC và AI = BC nên tứ giác ABCI là hình vuông hay
\(CI = a = \frac{1}{2}AD \Rightarrow \Delta ACD\) là tam giác vuông tại C.
Kẻ \(AH \bot SC\)
Ta có \(\left\{ \begin{array}{l} AC \bot CD\\ AC \bot SA \end{array} \right. \Rightarrow CD \bot \left( {SCA} \right)\)
Hay \(CD \bot AH\) nên \(AH \bot \left( {SCD} \right)\)
\( \Rightarrow d\left( {A,{\rm{ }}\left( {SCD} \right)} \right) = AH\); \(AC = \sqrt {A{B^2} + B{C^2}} = a\sqrt 2 \).
\(AH = \frac{{SA.AC}}{{\sqrt {S{A^2} + A{C^2}} }} = \frac{{a\sqrt 2 .a\sqrt 2 }}{{\sqrt {2{a^2} + 2{a^2}} }} = a\).
Gọi \(AB \cap CD = E\), mặt khác \(\frac{{EB}}{{EA}} = \frac{{BC}}{{AD}} = \frac{1}{2}\) nên B là trung điểm của đoạn AE.
\(\frac{{d\left( {B,\left( {SCD} \right)} \right)}}{{d\left( {A,\left( {SCD} \right)} \right)}} = \frac{1}{2} = \frac{a}{2}\)
Vậy \(d = \frac{1}{2}a\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247