A. 0,59
B. 0,02
C. 0,41
D. 0,23
C
Giả sử nhóm A có x1 nam, y1 nữ. \(\left( {0 < {x_1},{y_1} < 23} \right)\)
Giả sử nhóm B có x2 nam, y2 nữ. \(\left( {0 < {x_2},{y_2} < 23} \right)\)
Giả thiết: \({x_1} + {y_1} + {x_2} + {y_2} = 25\) (1)
Xác suất chọn được hai nam là 0,57
\(\begin{array}{l} \Rightarrow {P_1} = \frac{{{x_1}{x_2}}}{{\left( {{x_1} + {y_1}} \right)\left( {{x_2} + {y_2}} \right)}} = 0,57 = \frac{{57}}{{100}}\\ \Rightarrow \left\{ {\begin{array}{*{20}{c}} {{x_1}{x_2} = 57 = 3.19\left( 2 \right)}\\ {\left( {{x_1} + {y_1}} \right)\left( {{x_2} + {y_2}} \right) = 100\left( 3 \right)} \end{array}} \right. \end{array}\)
Trường hợp \({x_1}{x_2} = k.57\), \(k \in N {^*}\) không thỏa mãn (1).
Vậy từ (2) suy ra: \(\left[ {\begin{array}{*{20}{c}} {{x_1} = 3;{x_2} = 19}\\ {{x_1} = 19;{x_2} = 3} \end{array}} \right.\)
Kết hợp (3) ta có: \(\left[ {\begin{array}{*{20}{c}} {{x_1} = 3;{x_2} = 19;{y_1} = 2;{y_2} = 1}\\ {{x_1} = 19;{x_2} = 3;{y_1} = 1;{y_2} = 2} \end{array}} \right.\)
Vậy xác suất để có cả nam và nữ là: \(P = \frac{{3.1 + 2.19}}{{5.20}}=0,41\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247