A. \(\frac{{4\pi {a^2}\sqrt 3 }}{3}\)
B. \(2\pi {a^2}\)
C. \(4\pi {a^2}\)
D. \(\frac{{8\pi {a^2}\sqrt 3 }}{3}\)
C
Gọi M là trung điểm BC. Khi đó ta có \(BC \bot AM,BC \bot A'M\)
Suy ra: \(\left( {\left( {A'BC} \right),\left( {ABC} \right)} \right) = \widehat {A'MA} = 45^\circ \)⇒ AA' = AM. Gọi O là trọng tâm tam giác ABC.
Đặt BC = x, x > 0. Ta có \(AM = A'A = \frac{{x\sqrt 3 }}{2} \Rightarrow A'M = \frac{{x\sqrt 6 }}{2}\).
Nên \({S_{\Delta A'BC}} = \frac{1}{2}.A'M.BC = \frac{{{x^2}\sqrt 6 }}{4} = {a^2}\sqrt 6 \) ⇒ x = 2a.
Khi đó: \(AO = \frac{2}{3}AM = \frac{2}{3}.\frac{{2a\sqrt 3 }}{2} = \frac{{2a\sqrt 3 }}{3}\) và \(A'A = a\sqrt 3 \).
Suy ra diện tích xung quang khối trụ là: \({S_{xq}} = 2\pi .OA.A'A = 2\pi .\frac{{2a\sqrt 3 }}{3}.a\sqrt 3 = 4\pi {a^2}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247