Cho tam giác ABC vuông tại A có AB=a , AC=3a .Khi quay tam giác quanh cạnh huyền BC thì đường gấp khúc BAC tạo thành hai hình nón có chung đáy .Tổng diện tích xung quanh của hai...

Câu hỏi :

Cho tam giác ABC vuông tại A có AB = a , AC = 3a .Khi quay tam giác  quanh cạnh huyền BC thì đường gấp khúc BAC tạo thành hai hình nón có chung đáy .Tổng diện tích xung quanh của  hai hình nón đó là

A. \(\frac{{12\pi {a^2}}}{{\sqrt {10} }}\)

B. \(\frac{{4\pi {a^2}}}{{\sqrt {10} }}\)

C. \(\frac{{6\pi {a^2}}}{{\sqrt {10} }}\)

D. \(\frac{{10\pi {a^2}}}{{\sqrt {10} }}\)

* Đáp án

A

* Hướng dẫn giải

Cạnh huyền \(BC = a\sqrt {10} \); đường cao \(AH = \frac{{3a}}{{\sqrt {10} }}\) là bán kính đáy của hai hình nón; các cạnh AB;AC lần lượt là đường sinh của hai hình nón . Nên tổng diện tích xung quanh hai hình nón là 

\(S = \pi .AH(AB + AC) = \pi .a\frac{3}{{\sqrt {10} }}4a = \frac{{12\pi {a^2}}}{{\sqrt {10} }}\)

Copyright © 2021 HOCTAP247