Một cái hộp có chứa 3 viên bi đỏ, 2 viên bi xanh và n viên bi vàng (các viên bi có kích thước như nhau; n là số nguyên dương).

Câu hỏi :

Một cái hộp có chứa 3 viên bi đỏ, 2 viên bi xanh và n viên bi vàng (các viên bi có kích thước như nhau; n là số nguyên dương). Lấy ngẫu nhiên 3 viên bi từ hộp. Biết xác suất để trong 3 viên bi lấy được có đủ 3 màu là \(\dfrac9{28}\). Tính xác suất P để trong 3 viên bi lấy được có ít nhất một viên bi xanh.

A. \(P=\frac{9}{{14}}\)

B. \(P=\frac{9}{{15}}\)

C. \(P=\frac{9}{{17}}\)

D. \(P=\frac{9}{{4}}\)

* Đáp án

A

* Hướng dẫn giải

Gọi A là biến cố ‘’lấy được ba viên bi đủ ba màu’’ , theo giả thiết ta có

\(\frac{{n(A)}}{{n(\Phi )}} = \frac{9}{{28}} \Leftrightarrow \frac{{2.3.n}}{{C_{n + 5}^3}} = \frac{9}{{28}} \Rightarrow n = 3\)

Gọi B là biến cố lấy ‘’ lấy được ít nhất một viên bi xanh’’

\(n(\overline B ) = C_6^3 = 20 \Rightarrow n(\overline B ) = \frac{{20}}{{56}} = \frac{5}{{14}} \Rightarrow n(B) = \frac{9}{{14}}\)

Copyright © 2021 HOCTAP247