Cho hình trụ có chiều cao bằng 8a. Biết hai điểm A, C lần lượt nằm trên hai đáy thỏa AC = 10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là

Câu hỏi :

Cho hình trụ có chiều cao bằng 8a. Biết hai điểm A, C lần lượt nằm trên hai đáy thỏa AC = 10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là

A. \(128\pi {a^3}\)

B. \(320\pi {a^3}\)

C. \(80\pi {a^3}\)

D. \(200\pi {a^3}\)

* Đáp án

D

* Hướng dẫn giải

Gọi (O), (O') lần lượt là hai đường tròn đáy. \(A \in \left( O \right),C \in \left( {O'} \right)\).

Dựng AD, CB lần lượt song song với OO'(\(D \in \left( {O'} \right),B \in \left( O \right)\)). Dễ dàng có ABCD là hình chữ nhật.

Do \(AC = 10a,AD = 8a \Rightarrow DC = 6a\).

Gọi H là trung điểm của DC.

\(\left\{ {\begin{array}{*{20}{c}} {O'H \bot DC}\\ {O'H \bot AD} \end{array}} \right. \Rightarrow O'H \bot \left( {ABCD} \right)\).

Ta có \(OO'//\left( {ABCD} \right) \Rightarrow d\left( {OO',AC} \right) = d\left( {OO',\left( {ABCD} \right)} \right) = O'H = 4a\).

\(O'H = 4a,CH = 3a \Rightarrow R = O'C = 5a\).

Vậy thể tích của khối trụ là \(V = \pi {R^2}h = \pi {\left( {5a} \right)^2}8a = 200\pi {a^3}\).

Copyright © 2021 HOCTAP247