A. 58
B. 54
C. 56
D. 60
C
Theo bài ra ta có:
\(\begin{array}{l} {a^{2x}} = {b^{3y}} = {a^6}{b^6}\\ \Leftrightarrow \left\{ \begin{array}{l} {a^{2x}} = {a^6}{b^6}\\ {b^{3y}} = {a^6}{b^6} \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} 2x = {\log _a}\left( {{a^6}{b^6}} \right)\\ 3y = {\log _b}\left( {{a^6}{b^6}} \right) \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} 2x = 6 + 6{\log _a}b\\ 3y = 6 + 6{\log _b}a \end{array} \right. \end{array}\)
\( \Leftrightarrow \left\{ \begin{array}{l} x = 3\left( {1 + {{\log }_a}b} \right)\\ y = 2\left( {1 + {{\log }_b}a} \right) \end{array} \right.\)
Vì a, b > 1 nên \({\log _a}b > {\log _a}1 = 0\).
Do đó:
\(P = 4xy + 2x - y = 24(1 + {\log _a}b)(1 + {\log _b}a) + 6 + 6\log {}_ab - 2 - 2{\log _b}a\)
\( = 52 + 30{\log _a}b + 22{\log _b}a \ge 52 + 2\sqrt {30{{\log }_a}b.22{{\log }_b}a} = 52 + 4\sqrt {165} \)
Vậy P đạt giá trị nhỏ nhất là \(m + n\sqrt {165} \) khi \(30{\log _a}b = 22{\log _b}a \Leftrightarrow {\log _a}b = \sqrt {\frac{{11}}{{15}}} \Leftrightarrow b = {a^{\sqrt {\frac{{11}}{{15}}} }}\)
Ta có: \(\left\{ \begin{array}{l} m = 52\\ n = 4 \end{array} \right. \Rightarrow m + n = 56\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247