Cho hình lập phương ABCD.A'B'C'D' cạnh bằng 3a, sao cho . Mặt phẳng (α) qua A, K và song song với B'D' chia khối lập phương trình hai phần. Tính thể tích phần khối đa diện chứa đỉ...

Câu hỏi :

Cho hình lập phương ABCD.A'B'C'D' cạnh bằng 3a, \(K \in CC'\) sao cho \(CK = \frac{2}{3}CC'\). Mặt phẳng (α) qua A, K và song song với B'D' chia khối lập phương trình hai phần. Tính thể tích phần khối đa diện chứa đỉnh C.

A. \(\frac{3}{4}{a^3}\)

B. \(\frac{1}{2}{a^3}\)

C. 3a3

D. 9a3

* Đáp án

D

* Hướng dẫn giải

Gọi O, O' là tâm của hình vuông \(ABCD.A'B'C'D',M = AK \cap {\rm{OO'}}\)

Qua M kẻ đường thẳng song song với BD cắt BB', DD' lần lượt tại E, F

Khi đó, thiết diện tạo bởi (α) và hình lập phương chính là hình bình hành AEKF.

Có OM là đường trung bình tam giác ACK nên \(OM = \frac{1}{2}CK = \frac{1}{2}.\frac{2}{3}CC' = a\)

Do đó, \(BE = DF = \frac{1}{2}CK = \frac{a}{2}\).

Dễ thấy tứ giác BCKF = C'B'EK, mặt phẳng (AA'C'C) chia khối ABEKFDC thành hai phần bằng nhau nên:

\({V_{ABEKFDC}} = 2{V_{A.BCKE}} = 2.\frac{1}{3}.AB.{S_{BCKE}} = \frac{2}{3}.3a.\frac{1}{2}.{S_{BCC'B'}} = 9{a^3}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Nho Quan B

Số câu hỏi: 45

Copyright © 2021 HOCTAP247