Trong không gian Oxyz, cho hai điểm \(A\left( {10;6; - 2} \right),B\left( {5;10; - 9} \right)\)và mặt phẳng \(\left( \alpha \right):2x + 2y + z - 12 = 0.\)Điểm M di động trên mặt phẳng \(\left( \alpha \right)\) sao cho MA, MB luôn tạo với \(\left( \alpha \right)\) các góc bằng nhau. Biết rằng M luôn thuộc một đường tròn \(\left( \omega \right)\) cố định. Hoành độ của tâm đường tròn \(\left( \omega \right)\) bằng