Cho hình hộp chữ nhật ABCD.A'B'C'D' có \(AB = 2;AD = 4\sqrt 2 ;AA' = 2\sqrt 3 .\) Diện tích mặt cầu ngoại tiếp hình hộp đã cho bằng

Câu hỏi :

Cho hình hộp chữ nhật ABCD.A'B'C'D' có \(AB = 2;AD = 4\sqrt 2 ;AA' = 2\sqrt 3 .\) Diện tích mặt cầu ngoại tiếp hình hộp đã cho bằng 

A. \(36\pi .\)

B. \(9\pi .\)

C. \(48\pi .\)

D. \(12\pi .\)

* Đáp án

C

* Hướng dẫn giải

Gọi I là tâm mặt cầu ⇒ I là trung điểm của CA'

Ta có \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{2^2} + {{\left( {4\sqrt 2 } \right)}^2}} = 6 \Rightarrow A'C = \sqrt {AA{'^2} + A{C^2}} = \sqrt {{6^2} + {{\left( {2\sqrt 3 } \right)}^2}} = 4\sqrt 3 .\)

Bán kính mặt cầu: \(R = \frac{{A'C}}{2} = 2\sqrt 3 .\) Diện tích mặt cầu bằng: \(S = 4\pi {R^2} = 4\pi .{\left( {2\sqrt 3 } \right)^2} = 48\pi .\)

Copyright © 2021 HOCTAP247