A. 12
B. 10
C. 9
D. 11
B
\(y' = 2m - 1 + \left( {3m + 2} \right)\sin x\)
Hàm số \(y = \left( {2m - 1} \right)x - \left( {3m + 2} \right)\cos x\) nghịch biến trên \(\left( {0;\pi } \right).\)
\( \Rightarrow y' \le 0{\rm{ }}\forall x \in \left( {0;\pi } \right) \Leftrightarrow 2m - 1 + \left( {3m + 2} \right)\sin x \le 0{\rm{ }}\forall x \in \left( {0;\pi } \right)\)
\( \Leftrightarrow m\left( {2 + 3\sin x} \right) + 2\sin x - 1 \le 0{\rm{ }}\forall x \in \left( {0;\pi } \right).\)
\( \Leftrightarrow m \le \frac{{1 - 2\sin x}}{{2 + 3\sin x}}{\rm{ }}\forall x \in \left( {0;\pi } \right) \Leftrightarrow m \le \mathop {\min }\limits_{x \in \left( {0;\pi } \right)} \left( {\frac{{1 - 2\sin }}{{2 + 3\sin x}}} \right).\)
Xét \(f\left( x \right) = \frac{{1 - 2t}}{{2 + 3t}},{\rm{ }}\forall t \in \left( {0;1} \right].\)
\(f'\left( t \right) = \frac{{ - 7}}{{{{\left( {2 + 3t} \right)}^2}}} < 0,\forall t \in \left( {0;1} \right] \Rightarrow \mathop {\min }\limits_{t \in \left( {0;1} \right]} f\left( t \right) = f\left( 1 \right) = - \frac{1}{5}\)
Do đó \(m \le - \frac{1}{5}\)
Mà \(m \in \left[ { - 10;10} \right] \cap Z \Rightarrow m \in \left\{ { - 10;...; - 1} \right\}.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247