Cho hình trụ có hai đáy là hai hình tròn (O) và (O') bán kính đáy r = 3. Biết AB là một dây của đường tròn (O) sao cho tam giác O'AB là tam giác đều và (O'AB) tạo với mặt phẳng chứ...

Câu hỏi :

Cho hình trụ có hai đáy là hai hình tròn (O) và (O') bán kính đáy r = 3. Biết AB là một dây của đường tròn (O) sao cho tam giác O'AB là tam giác đều và (O'AB) tạo với mặt phẳng chứa hình tròn (O) một góc 60o. Thể tích của khối trụ đã cho bằng 

A. \(\frac{{27\sqrt 5 \pi }}{5}.\)

B. \(\frac{{27\sqrt 7 \pi }}{7}.\)

C. \(\frac{{81\sqrt 7 \pi }}{7}.\)

D. \(\frac{{81\sqrt 5 \pi }}{5}.\)

* Đáp án

B

* Hướng dẫn giải

Gọi H là trung điểm của AB. Khi đó góc giữa \(\left( O'AB \right)\) tạo với mặt phẳng chứa hình tròn \(\left( O \right)\) bằng góc \(\widehat{OHO'}={{60}^{0}}.\)

Ta có \(O'H=\frac{AB\sqrt{3}}{2};OH=\cos {{60}^{0}}.O'H=\frac{1}{2}O'H=\frac{AB\sqrt{3}}{4}\)

\(O{{A}^{2}}=O{{H}^{2}}+{{\left( \frac{AB}{2} \right)}^{2}}\Leftrightarrow 9={{\left( \frac{AB\sqrt{3}}{4} \right)}^{2}}+{{\left( \frac{AB}{2} \right)}^{2}}\Leftrightarrow AB=\frac{12\sqrt{7}}{7}\)

\(O'H=\frac{6\sqrt{21}}{7}\)

\(OO'=O'H.\sin {{60}^{0}}=\frac{9\sqrt{7}}{7}.\)

Thể tích của khối trụ đã cho bằng \(V=\frac{1}{3}\pi {{.3}^{2}}.\frac{9\sqrt{7}}{7}=\frac{27\pi \sqrt{7}}{7}.\)

Copyright © 2021 HOCTAP247