Gọi N(t) là số phần trăm cacbon 14 còn lại trong một bộ phận của một cây sinh trưởng từ t năm trước đây thì ta có công thức với A là hằng số.

Câu hỏi :

Gọi N(t) là số phần trăm cacbon 14 còn lại trong một bộ phận của một cây sinh trưởng từ t năm trước đây thì ta có công thức \(N\left( t \right) = 100.{\left( {0,5} \right)^{\frac{t}{A}}}{\rm{ }}\left( \% \right)\) với A là hằng số. Biết rằng một mẫu gỗ có tuổi khoảng 3754 năm thì lượng cácbon 14 còn lại là 65%. Phân tích mẫu gỗ từ một công trình kiến trúc cổ, người ta thấy lượng cácbon 14 còn lại trong mẫu gỗ là 63%. Hãy xác định tuổi của mẫu gỗ được lấy từ công trình đó

A. 3874

B. 3833

C. 3834

D. 3843

* Đáp án

B

* Hướng dẫn giải

Theo bài ra ta có \(65 = 100.{\left( {0,5} \right)^{\frac{{3754}}{A}}} \Leftrightarrow 0,65 = {\left( {0,5} \right)^{\frac{{3754}}{A}}} \Leftrightarrow \frac{{3754}}{A} = {\log _{0,5}}0,65 \Leftrightarrow A = \frac{{3754}}{{{{\log }_{0,5}}0,65}}\).

Do mẫu gỗ còn 63% lượng Cacbon 14 nên ta có:

\(63 = 100.{\left( {0,5} \right)^{\frac{t}{A}}} \Leftrightarrow 0,63 = {\left( {0,5} \right)^{\frac{t}{A}}} \Leftrightarrow \frac{t}{A} = {\log _{0,5}}0,63 \Leftrightarrow t = A.{\log _{0,5}}0,63 = \frac{{3754}}{{{{\log }_{0,5}}0,65}}.{\log _{0,5}}0,63 \approx 3833\).

Copyright © 2021 HOCTAP247