Gọi F(x) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{x}{{\sqrt {8 - {x^2}} }}\) thỏa mãn F(2) = 0, khi đó phương trình F(x) = x có nghiệm là:

Câu hỏi :

Gọi F(x) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{x}{{\sqrt {8 - {x^2}} }}\) thỏa mãn F(2) = 0, khi đó phương trình  F(x) = x có nghiệm là:

A. x = 1

B. x = -1

C. x = 0

D. \(x = 1 - \sqrt 3 \)

* Đáp án

D

* Hướng dẫn giải

\(F(x) = \int {f(x)dx}  =  - \frac{1}{2}\int {\frac{{d(8 - {x^2})}}{{\sqrt {8 - {x^2}} }}}  =  - \sqrt {8 - {x^2}}  + C\)

\(\begin{array}{l} F(2) = 0 \Rightarrow C = 2\\ \Rightarrow F(x) = - \sqrt {8 - {x^2}} + 2 \end{array}\)

Khi đó: \(F(x) = x \Leftrightarrow \sqrt {8 - {x^2}} = 2 - x \Leftrightarrow \left\{ \begin{array}{l} x \le 2\\ 2{x^2} - 4x - 4 = 0 \end{array} \right. \Leftrightarrow x = 1 - \sqrt 3 \)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 12 năm 2021 - Trường THPT Trưng Vương

Số câu hỏi: 40

Copyright © 2021 HOCTAP247