Trong không gian Oxyz, cho hai điểm \(M\left( { - 2;0;1} \right),\,\,N\left( {0;2; - 1} \right)\). Phường trình của mặt cầu có đường kính MN là

Câu hỏi :

Trong không gian Oxyz, cho hai điểm \(M\left( { - 2;0;1} \right),\,\,N\left( {0;2; - 1} \right)\). Phường trình của mặt cầu có đường kính MN là

A. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = \sqrt 3 \)

B. \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 3\)

C. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 3\)

D. \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 11\)

* Đáp án

C

* Hướng dẫn giải

Ta có \(M\left( { - 2;0;1} \right),N\left( {0;2; - 1} \right)\) nên trung điểm của MN là \(I\left( { - 1;1;0} \right)\) hay I là tâm mặt cầu đường kính MN.

Mặt khác \(R = IM = \sqrt {1 + 1 + 1}  = \sqrt 3 .\)

Khi đó phương trình măt cầu là \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 3.\)

Copyright © 2021 HOCTAP247