Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\left[ {0;1} \right],\) \(f\left( 0 \right) = 1\) và \(f\left( 1 \right) = 3\). Khi đó \(\int\limits_0^1 {f'\left( x \ri...

Câu hỏi :

Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\left[ {0;1} \right],\) \(f\left( 0 \right) = 1\) và \(f\left( 1 \right) = 3\). Khi đó \(\int\limits_0^1 {f'\left( x \right)dx} \) bằng

A. -3

B. -2

C. 3

D. 2

* Đáp án

D

* Hướng dẫn giải

Ta có \(\int\limits_0^1 {f'\left( x \right)dx}  = \left. {f\left( x \right)} \right|_0^1 \)\(= f\left( 1 \right) - f\left( 0 \right) = 3 - 1 = 2.\)

Copyright © 2021 HOCTAP247