Cho \(I = 4\int\limits_0^m {{e^{\sin 2x}}\cos 2x.dx} \) với \(m \in \mathbb{R}\). Mệnh đề nào dưới đây đúng?

Câu hỏi :

Cho \(I = 4\int\limits_0^m {{e^{\sin 2x}}\cos 2x.dx} \) với \(m \in \mathbb{R}\). Mệnh đề nào dưới đây đúng?

A. \(I = 2 - 2{e^{\cos 2m}}.\)

B. \(I = 2 - 2{e^{\sin 2m}}.\)

C. \(I = 2{e^{\sin 2m}} + 2.\)

D. \(I = 2{e^{\sin 2m}} - 2.\)

* Đáp án

D

* Hướng dẫn giải

Ta có \(I = 4.\int\limits_0^m {{e^{\sin 2x}}\cos 2x.dx} \)\(I = \left. {\ln 3.x.\frac{{{3^x}}}{{\ln 3}}} \right|_0^m - \ln 3.\frac{1}{{\ln 3}}\int\limits_0^m {{3^x}dx} \)

Đặt \({e^{\sin 2x}} = t \Rightarrow dt = 2\cos 2x.{e^{\sin 2x}}dx\)

Khi đó \(I = 4\int\limits_1^{{e^{\sin 2m}}} {\frac{{dt}}{2}}  = 2\int\limits_1^{{e^{\sin 2m}}} {dt}  \)\(= \left. {2t} \right|_1^{{e^{\sin 2m}}} = 2{e^{\sin 2m}} - 2\)

Copyright © 2021 HOCTAP247