Cho tập nghiệm của bất phương trình \(2{\left( {{{\log }_4}x} \right)^2} - 3{\log _4}x + 1 \le 0\) là \(\left[ {m;n} \right]\) với \(m,n \in \mathbb{R}\). Khi đó \(2m + n\) bằng

Câu hỏi :

Cho tập nghiệm của bất phương trình \(2{\left( {{{\log }_4}x} \right)^2} - 3{\log _4}x + 1 \le 0\) là \(\left[ {m;n} \right]\) với \(m,n \in \mathbb{R}\). Khi đó \(2m + n\) bằng

A. 7

B. 6

C. 8

D. 9

* Đáp án

C

* Hướng dẫn giải

Ta có

\(\begin{array}{l}2{\left( {{{\log }_4}x} \right)^2} - 3{\log _4}x + 1 \le 0\\ \Leftrightarrow \left( {{{\log }_4}x - 1} \right)\left( {2{{\log }_4}x - 1} \right) \le 0\\ \Leftrightarrow \frac{1}{2} \le {\log _4}x \le 1\\ \Leftrightarrow 2 \le x \le 4\end{array}\)

Khi đó \(\left\{ \begin{array}{l}m = 2\\n = 4\end{array} \right. \Rightarrow 2m + n = 8\)

Copyright © 2021 HOCTAP247