Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y=2x^3-3( m+1)x^2+ 6mx

Câu hỏi :

Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y=2x3-3( m+1) x2+ 6mx có hai điểm cực trị A; B  sao cho đường thẳng AB vuông góc với đường thẳng y= x+ 2.

A. 0; 3

B. 2; 4

C. 0; 2

D. 1; 3

* Đáp án

C

* Hướng dẫn giải

+ Ta có  đạo hàm y’ = 6x2- 6( m + 1)x + 6m

Điều kiện để hàm số có 2 điểm cực trị là : m ≠ 1

Tọa độ 2 điểm cực trị là A( 1 ; 3m -1) và B ( m ; -m3 + 3m2)

+ Hệ số góc đường thẳng AB là: k = -(m - 1)2

+ Đường thẳng AB vuông góc với đường thẳng y= x + 2 khi và chỉ khi k = -1

Hay – (m - 1) 2 = -1( vì 2 đường thẳng vuông góc với nhau thì tích hai hệ số góc bằng -1) (tm)

Chọn C.

Copyright © 2021 HOCTAP247