Cho hàm số y=x-1 / x+2 có đồ thị (C) . Gọi I là giao điểm của hai tiệm cận của (C)

Câu hỏi :

Cho hàm số y=x-1x+2  có đồ thị (C) . Gọi  I  là giao điểm của hai tiệm cận của (C) . Xét tam giác đều ABI có hai đỉnh A; B thuộc (C) , đoạn thẳng AB  có độ dài bằng

A. 6.

B. 23.

C. 2.

D. 22.

* Đáp án

B

* Hướng dẫn giải

+ Đồ thị hàm số đã cho có tiệm cận đứng là x= -2 và tiệm cận ngang là y= 1.

Giao điểm hai đường tiệm cận là I ( -2; 1) .

Ta có: 

A(a;1-3a+2)(C), B(b;1-3b+2)(C).IA=(a+2;-3a+2), IB=(b+2;-3b+2).

Đặt  a1== a+ 2 ; b1= b+ 2( a1≠ 0 ; b1≠0 ; a1 ≠ b1

Tam giác ABI đều khi và chỉ khi

Ta có (1) 

 

+ Trường hợp a1= b1 loại

+ Trường hợp a1= - b1 ; a1b1 = -3  (loại vì không thỏa (2) .

+ Trường hợp  a1 b1 =3 thay vào ( 2) ta được

3+93a12+9a12=12a12+9a12=12.

Vậy AB=IA=a12+9a12=23.

Chọn B.

Copyright © 2021 HOCTAP247