Cho hàm số y=1/3x^4-14/3x^2 có đồ thị (C). Có bao nhiêu điểm A thuộc (C) sao cho

Câu hỏi :

Cho hàm số y=13x4-143x2  có đồ thị (C). Có bao nhiêu điểm A thuộc (C)  sao cho tiếp tuyến của (C)  tại A  cắt đồ thị ( C)  tại hai điểm phân biệt M( x1; y1)  và N( x2; y2) (M; N khác A) sao cho y2- y1=  8( x2- x1).

A. 0

B. 2

C. 3

D. 5

* Đáp án

B

* Hướng dẫn giải

+ Đạo hàm : y’ = 4/3.x3-28/3. x

y2-y1=8(x2-x1)y2-y1x2-x1=8

Vậy tiếp tuyến của (C)  tại A  có hệ số góc bằng 8.

 + Xét phương trình y' = 8

43x3-283x=84x3-28x-24=0

+) Với x= 3 thì A( 3; -15) nên phương trình tiếp tuyến của (C)  tại A là y = 8(x-3) - 15 (d1)

Phương trình hoành độ giao điểm của (C)  và (d1) là

 

8(x-3)-15=13x4-143x2(x-3)2(x2+6x+13)=0x=3.

Vậy  A(3; -15)  loại.

+) Với x= -2 thì A(-2; -40/3) . phương trình tiếp tuyến của (C)  tại A là y = 8(x+2) - 40/3 (d2)

Phương trình hoành độ giao điểm của ( C)  và (d2)  là

8(x+2)-403=13x4-143x2(x+2)2(x2-4x-2)=0

Vậy  A( -2; -40/3) thỏa mãn.

+) Với  x= -1 thì A( -2; -13/ 3)  nên  phương trình tiếp tuyến của C tại A là

y = 8(x+1) - 13/3 (d3)

Phương trình hoành độ giao điểm của C  và (d3)  là: 

8(x+1)-133=13x4-143x2(x+2)2(x2-2x-11)=0

Vậy A( -1; -13/3) thỏa mãn.

Vậy có tất cả 2 điểm A thỏa mãn yêu cầu bài toán.

Chọn B.

Copyright © 2021 HOCTAP247