Cho hàm số y= f( x) liên tục trên R Đồ thị của hàm số y= f’ (x) như hình bên. Đặt g(x)

Câu hỏi :

Cho hàm số y= f( x)  liên tục trên R  Đồ thị của hàm số y= f’ (x)  như hình bên. Đặt g(x) = 2f(x)-(x+ 1) 2 . Mệnh đề nào dưới đây đúng?

A. min[-3;3]g(x)=g(1).

B. max[-3;3]g(x)=g(1).

C. min[-3;3]g(x)=g(3).

D. Không tồn tại giá trị nhỏ nhất của g( x)  trên [-3;3]

* Đáp án

B

* Hướng dẫn giải

Ta có:

+ Với x< - 3 ta có:  f’ (x)< x + 1  suy ra hàm số nghịch biến trên khoảng ( -∞; -3)

+ Xét hàm số g( x) ; ta cần so sánh g(-3) và g( 3)

Ta có g(x) = 2f(x) – ( x + 1) 2 nên g’(x) = 2f’(x) - 2(x + 1)

Phương trình  (Dựa vào đồ thị hàm số y= f’ (x)) .

Bảng xét dấu của g’(x)

Dựa vào bảng xét dấu, ta được max[-3;3]g(x)=g(1).

Dựa vào hình vẽ lại có 

Do đó g( 1) – g( -3) > g( 1) – g( 3) hay g( 3) > g( -3) .

Suy ra GTNN của hàm số trên đoạn [- 3; 3] là  g( -3) .

Chọn B.

Copyright © 2021 HOCTAP247