Cho hàm số y=2x^3+mx^2-12x-13 với m là tham số thực. Tìm giá trị của m

Câu hỏi :

Cho hàm số  y=2x3+mx2-12x-13 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số có hai điểm cực trị cách đều trục tung.

A. m=2

B. m=-1

C. m=1

D. m=0

* Đáp án

D

* Hướng dẫn giải

Ta có  y’= 6x2+2mx-12

Do '=m2+72>0, m  nên hàm số luôn có hai điểm cực trị x1; x2 với x1; x2 là hai nghiệm của phương trình y’=0 .

 Theo định lí Viet, ta có x1+x2=-m3

Gọi A( x1; y1) và B( x2; y2) là hai điểm cực trị của đồ thị hàm số.

Yêu cầu bài toán

x1=x2x1=-x2(do x1 khác x2 )

x1+x2=0-m3=0m=0

Chọn D.

Copyright © 2021 HOCTAP247