Cho hàm số f(x) có đạo hàm và liên tục trên \(\left[ {0\,;\frac{\pi }{2}} \right]\), thoả mãn \(\int\limits_0^{\frac{\pi }{2}} {f'{\rm{(}}x){\rm{si}}{{\rm{n}}^2}{\rm{xd}}x} = 8\)...
Cho hàm số f(x) có đạo hàm và liên tục trên \(\left[ {0\,;\frac{\pi }{2}} \right]\), thoả mãn \(\int\limits_0^{\frac{\pi }{2}} {f'{\rm{(}}x){\rm{si}}{{\rm{n}}^2}{\rm{xd}}x} = 8\) và \(f\left( {\frac{\pi }{2}} \right) = 3\). Tích phân \(I = \int\limits_0^{\frac{\pi }{2}} {f{\rm{(}}x){\rm{sin2}}x{\rm{d}}x} \) bằng