Cho hàm số f(x) có đạo hàm và liên tục trên \(\left[ {0\,;\frac{\pi }{2}} \right]\), thoả mãn \(\int\limits_0^{\frac{\pi }{2}} {f'{\rm{(}}x){\rm{si}}{{\rm{n}}^2}{\rm{xd}}x} = 8\)...

Câu hỏi :

Cho hàm số f(x) có đạo hàm và liên tục trên \(\left[ {0\,;\frac{\pi }{2}} \right]\), thoả mãn \(\int\limits_0^{\frac{\pi }{2}} {f'{\rm{(}}x){\rm{si}}{{\rm{n}}^2}{\rm{xd}}x}  = 8\) và \(f\left( {\frac{\pi }{2}} \right) = 3\). Tích phân \(I = \int\limits_0^{\frac{\pi }{2}} {f{\rm{(}}x){\rm{sin2}}x{\rm{d}}x} \) bằng

A. 5

B. -5

C. 13

D. -13

* Đáp án

B

* Hướng dẫn giải

Đặt \(u = {\sin ^2}x \Rightarrow du = \sin 2xdx\)

\(dv = f'(x)dx \Rightarrow v = f(x)\)

Copyright © 2021 HOCTAP247