Cho hình chóp S.ABC có các cạnh bên SA, SB, SC tạo với đáy các góc bằng nhau và đều bằng \({{30}^{\text{o}}}\). Biết AB=5, BC=8, AC=7, khoảng cách d từ điểm A đến mặt phẳng \(\left...

Câu hỏi :

Cho hình chóp S.ABC có các cạnh bên SA, SB, SC tạo với đáy các góc bằng nhau và đều bằng \({{30}^{\text{o}}}\). Biết AB=5, BC=8, AC=7, khoảng cách d từ điểm A đến mặt phẳng \(\left( SBC \right)\) bằng

A. \(d = \frac{{35\sqrt {39} }}{{13}}\)

B. \(d = \frac{{35\sqrt {39} }}{{52}}\)

C. \(d = \frac{{35\sqrt {13} }}{{52}}\)

D. \(d = \frac{{35\sqrt {13} }}{{26}}\)

* Đáp án

B

* Hướng dẫn giải

Kẻ \(SH\bot \left( ABC \right)\] tại H.

Ta có HA, HB, HC lần lượt là hình chiếu vuông góc của SA, SB, SC lên \(\left( ABC \right)\).

Theo giả thiết ta có \(\widehat{SAH}=\widehat{SBH}=\widehat{SCH}={{30}^{0}} \Rightarrow \Delta SAH=\Delta SBH=\Delta SCH \Rightarrow HA=HB=HC\). Do đó H là tâm đường tròn ngoại tiếp \(\Delta ABC\).

Ta có \({{V}_{S.ABC}}=\frac{1}{3}d\left( A,(SBC) \right).{{S}_{\Delta SBC}} \Rightarrow d\left( A,(SBC) \right)=\frac{3{{V}_{S.ABC}}}{{{S}_{\Delta SBC}}}, \left( * \right)\).

\(p=\frac{AB+BC+AC}{2}=10 \Rightarrow {{S}_{\Delta ABC}}=\sqrt{p\left( p-AB \right)\left( p-BC \right)\left( p-AC \right)}=10\sqrt{3}\).

\({{S}_{\Delta ABC}}=\frac{AB.BC.AC}{4R}\Rightarrow HA=R=\frac{AB.BC.AC}{4{{S}_{\Delta ABC}}}=\frac{7\sqrt{3}}{3}\).

\(SH=AH.\tan {{30}^{0}}=\frac{7}{3}\).

\({{V}_{S.ABC}}=\frac{1}{3}SH.{{S}_{\Delta ABC}}=\frac{70\sqrt{3}}{9}\).

\(p=\frac{SB+SC+BC}{2}=\frac{26}{3} \Rightarrow {{S}_{\Delta SBC}}=\sqrt{p\left( p-SB \right)\left( p-SC \right)\left( p-BC \right)}=\frac{8\sqrt{13}}{3}\).

Thế vào \(\left( * \right)\) ta được \(d\left( A,(SBC) \right)=\frac{3{{V}_{S.ABC}}}{{{S}_{\Delta SBC}}}=\frac{\frac{70\sqrt{3}}{3}}{\frac{8\sqrt{13}}{3}}=\frac{35\sqrt{39}}{52}\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Hòa An

Số câu hỏi: 49

Copyright © 2021 HOCTAP247