A. 90o
B. 30o
C. 60o
D. 45o
D
Ta có SB có hình chiếu vuông góc xuống \(\left( ABC \right)\) là AB, do đó góc giữa đường thẳng SB và mặt phẳng \(\left( ABC \right)\) là \(\widehat{SBA}\).
Do tam giác ABC vuông cân tại B và AC=2a nên \(A{{B}^{2}}+B{{C}^{2}}=A{{C}^{2}} \Rightarrow 2A{{B}^{2}}=4{{a}^{2}} \Rightarrow AB=a\sqrt{2}\).
Trong tam giác SAB có \(\tan \widehat{SBA}=\frac{SA}{AB} =1\), do đó \(\widehat{SBA}={{45}^{0}}\).
Vậy số đo góc giữa đường thẳng SB và mặt phẳng \(\left( ABC \right)\) bằng \({{45}^{0}}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247