Giả sử hàm số f liên tục trên đoạn [0;2] thỏa mãn \(\int\limits_{0}^{1}{f(x)\text{dx}}=6, \int\limits_{1}^{2}{f(x)\text{dx}}=-2\). Giá trị của tích phân \(\int\limits_{0}^{{\pi }/{...

Câu hỏi :

Giả sử hàm số f liên tục trên đoạn [0;2] thỏa mãn \(\int\limits_{0}^{1}{f(x)\text{dx}}=6, \int\limits_{1}^{2}{f(x)\text{dx}}=-2\). Giá trị của tích phân \(\int\limits_{0}^{{\pi }/{2}\;}{f(2\sin x)\cos x\text{dx}}\) là

A. -8

B. 8

C. 4

D. 2

* Đáp án

D

* Hướng dẫn giải

Đặt \(t=2\sin x \Rightarrow \text{dt}=2\cos x\text{dx}\) và

Khi đó

\(\int\limits_{0}^{{\pi }/{2}\;}{f(2\sin x)\cos x\text{dx}} =\int\limits_{0}^{2}{\frac{f(t)}{2}\text{dt}} =\frac{1}{2}\int\limits_{0}^{2}{f(t)\text{dt}} =\frac{1}{2}\left( \int\limits_{0}^{1}{f(t)\text{dt}}+\int\limits_{1}^{2}{f(t)\text{dt}} \right) =\frac{1}{2}\left( 6+\left( -2 \right) \right) =2\).

Vậy \(\int\limits_{0}^{{\pi }/{2}\;}{f(2\sin x)\cos x\text{dx}}=2\)

Copyright © 2021 HOCTAP247