A. \(\frac{5}{2}\)
B. \(\frac{-5}{2}\)
C. \(\frac{5}{4}\)
D. \(\frac{-5}{4}\)
C
Gọi \({{x}_{1}}\) là nghiệm dương lớn nhất của phương trình \({{x}^{4}}-3{{x}^{2}}+m=0\),ta có \(m=-x_{1}^{4}+3x_{1}^{2} \left( 1 \right)\).
Vì \({{S}_{1}}+{{S}_{3}}={{S}_{2}}\) và \({{S}_{1}}={{S}_{3}}\) nên \({{S}_{2}}=2{{S}_{3}}\) hay \(\int\limits_{0}^{{{x}_{1}}}{f\left( x \right)\text{d}x}=0\).
Mà \(\int\limits_{0}^{{{x}_{1}}}{f\left( x \right)\text{d}x} =\int\limits_{0}^{{{x}_{1}}}{\left( {{x}^{4}}-3{{x}^{2}}+m \right)\text{d}x} =\left. \left( \frac{{{x}^{5}}}{5}-{{x}^{3}}+mx \right) \right|_{0}^{{{x}_{1}}} =\frac{x_{1}^{5}}{5}-x_{1}^{3}+m{{x}_{1}} ={{x}_{1}}\left( \frac{x_{1}^{4}}{5}-x_{1}^{2}+m \right)\).
Dođó,\({{x}_{1}}\left( \frac{x_{1}^{4}}{5}-x_{1}^{2}+m \right)=0 \Leftrightarrow \frac{x_{1}^{4}}{5}-x_{1}^{2}+m=0 \left( 2 \right)\).
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\), ta có phương trình \(\frac{x_{1}^{4}}{5}-x_{1}^{2}-x_{1}^{4}+3x_{1}^{2}=0 \Leftrightarrow -4x_{1}^{4}+10x_{1}^{2}=0 \Leftrightarrow x_{1}^{2}=\frac{5}{2}\).
Vậy \(m=-x_{1}^{4}+3x_{1}^{2} =\frac{5}{4}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247