A. \(\frac{{24 + 18\sqrt 3 }}{5}\)
B. \(\frac{{12 + 9\sqrt 3 }}{5}\)
C. \(\frac{{16 + 60\sqrt 3 }}{9}\)
D. \(\frac{{8 + 30\sqrt 3 }}{9}\)
A
Mặt cầu \(\left( S \right)\) có tâm \(I\left( 4;3;-2 \right)\) và bán kính R=5.
Gọi H là trung điểm của AB thì \(IH\bot AB\) và IH=3 nên H thuộc mặt cầu \(\left( {{S}'} \right)\) tâm I bánkính \({R}'=3\)
Gọi M là trung điểm của \({A}'{B}'\) thì \(A{A}'+B{B}'=2HM\), M nằm trên mặt phẳng \(\left( P \right)\).
Mặt khác ta có \(d\left( I;\left( P \right) \right)=\frac{4}{\sqrt{3}}<R\) nên \(\left( P \right)\) cắt mặt cầu \(\left( S \right)\) và \(\sin \left( d;\left( P \right) \right)=\sin \alpha =\frac{5}{3\sqrt{3}}\). Gọi K là hình chiếu của H lên \(\left( P \right)\) thì \(HK=HM.\sin \alpha \).
Vậy để \(A{A}'+B{B}'\) lớn nhất thì HK lớn nhất
\(\Leftrightarrow HK\) đi qua I nên \(H{{K}_{\max }}={R}'+d\left( I;\left( P \right) \right)=3+\frac{4}{\sqrt{3}}=\frac{4+3\sqrt{3}}{\sqrt{3}}\).
Vậy \(A{A}'+B{B}'\) lớn nhất bằng \(2\left( \frac{4+3\sqrt{3}}{\sqrt{3}} \right).\frac{3\sqrt{3}}{5}=\frac{24+18\sqrt{3}}{5}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247