Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\), đồ thị hàm số \(y=f\left( x \right)\) như hình vẽ. Biết diện tích hình phẳng phần sọc kẻ bằng 3. Tính giá trị của...

Câu hỏi :

Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\), đồ thị hàm số \(y=f\left( x \right)\) như hình vẽ. Biết diện tích hình phẳng phần sọc kẻ bằng 3. Tính giá trị của biểu thức: \(T=\int\limits_{1}^{2}{{f}'\left( x+1 \right)\text{dx}}+\int\limits_{2}^{3}{{f}'\left( x-1 \right)\text{dx}}+\int\limits_{3}^{4}{f\left( 2x-8 \right)\text{dx}}\)

A. \(T = \frac{9}{2}\)

B. T = 6

C. T = 0

D. \(T = \frac{3}{2}\)

* Đáp án

D

* Hướng dẫn giải

Diện tích phần kẻ sọc là: \(S=\int\limits_{-2}^{0}{\left| f\left( x \right) \right|\text{dx}} =3\).

Vì \(f\left( x \right)\le 0 \forall x\in \left[ -2;0 \right] \Rightarrow 3=\int\limits_{-2}^{0}{\left| f\left( x \right) \right|\text{dx}}=\int\limits_{-2}^{0}{\left[ -f\left( x \right) \right]\text{dx}} \Leftrightarrow \int\limits_{-2}^{0}{f\left( x \right)\text{dx}}=-3\).

Tính \(I=\int\limits_{3}^{4}{f\left( 2x-8 \right)\text{dx}}\)

Đặt \(t=2x-8 \Rightarrow \text{dt}=2\text{dx}; x=3\Rightarrow t=-2; x=4\Rightarrow t=0\).

Suy ra: \(I=\int\limits_{-2}^{0}{f\left( t \right)\text{.}\frac{1}{2}\text{dt}} =\frac{1}{2}\int\limits_{-2}^{0}{f\left( x \right)\text{dx}} =-\frac{3}{2}\).

Vậy \(T=\int\limits_{1}^{2}{{f}'\left( x+1 \right)\text{dx}}+\int\limits_{2}^{3}{{f}'\left( x-1 \right)\text{dx}}+\int\limits_{3}^{4}{f\left( 2x-8 \right)\text{dx}}\)

\(=\left. f\left( x+1 \right) \right|_{1}^{2}+\left. f\left( x-1 \right) \right|_{2}^{3}+I =f\left( 3 \right)-f\left( 2 \right)+f\left( 2 \right)-f\left( 1 \right)-\frac{3}{2} =2-\left( -1 \right)-\frac{3}{2}=\frac{3}{2}\).

Copyright © 2021 HOCTAP247