A. \({\rm{\Delta }}:\frac{{x - 1}}{{12}} = \frac{{y + 1}}{2} = \frac{{x - 1}}{{ - 11}}\)
B. \({\rm{\Delta }}:\frac{{x - 2}}{{12}} = \frac{{y - 1}}{2} = \frac{{z + 1}}{{ - 11}}\)
C. \({\rm{\Delta }}:\frac{{x - 2}}{{12}} = \frac{{y - 1}}{2} = \frac{{z - 1}}{{ - 11}}\)
D. \({\rm{\Delta }}:\frac{{x - 2}}{{12}} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 1}}{{ - 11}}\)
C
Ta có \(\overrightarrow{AB}=\left( 1;-1;2 \right);\overrightarrow{AC}=\left( -1;-1;3 \right)\Rightarrow \left[ \overrightarrow{AB},\overrightarrow{AC} \right]=\left( -1;-5;-2 \right)\).
Vậy phương trình mặt phẳng \(\left( ABC \right):x+5y+2z-9=0\).
Gọi trực tâm của tam giác ABC là \(H\left( a;b;c \right)\) khi đó ta có hệ
\(\left\{ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {\overrightarrow {BH} .\overrightarrow {AC} = 0}\\ {\overrightarrow {CH} .\overrightarrow {AB} = 0} \end{array}}\\ {H \in \left( {ABC} \right)} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {a - b + 2c = 3}\\ {a + b - 3c = 0} \end{array}}\\ {a + 5b + 2c = 9} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {a = 2}\\ {b = 1} \end{array}}\\ {c = 1} \end{array}} \right. \Rightarrow H\left( {2;1;1} \right).\)
Do đường thẳng \(\text{ }\!\!\Delta\!\!\text{ }\) nằm trong \(\left( ABC \right)\) và vuông góc với \(\left( d \right)\) nên:
\(\left\{ {\begin{array}{*{20}{c}} {{{\vec u}_{\rm{\Delta }}} \bot {{\vec n}_{ABC}}}\\ {{{\vec u}_{\rm{\Delta }}} \bot {{\vec u}_d}} \end{array}} \right. \Rightarrow {\vec u_{\rm{\Delta }}} = \left[ {{{\vec n}_{ABC}},{{\vec u}_d}} \right] = \left( {12;2; - 11} \right).\)
Vậy phương trình đường thẳng \({\rm{\Delta }}:\frac{{x - 2}}{{12}} = \frac{{y - 1}}{2} = \frac{{z - 1}}{{ - 11}}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247