Cho khối chóp S.ABC có đáy là tam giác cân, AB = AC = 5a, BC = 6a

Câu hỏi :

Cho khối chóp S.ABC có đáy là tam giác cân, AB = AC = 5a, BC = 6a và các mặt bên tạo với đáy một góc 60°. Hãy tính thể tích của khối chóp đó.

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Kẻ SH (ABC) và HA’, HB’ , HC’ lần lượt vuông góc với BC, CA, AB. Theo định lí ba đường vuông góc ta có SA′  BC, SB′  CA, SC′  AB

Từ đó suy ra SA′H = SB′H = SC′H = 60°.

Do đó các tam giác vuông SHA’ , SHB’ , SHC’ bằng nhau. Từ đó suy ra HA’ = HB’ = HC’ . Vậy H là tâm đường tròn nội tiếp tam giác ABC. Do tam giác cân ở A nên AH vừa là đường phân giác , vừa là đường cao, vừa là đường trung tuyến. Từ đó suy ra A, H, A’ thẳng hàng và A’ là trung điểm của BC.

Do đó, AA'2=AB2-BA'2=25a2-9a2=16a2

Vậy AA’ = 4a

Gọi p là nửa chu vi của tam giác ABC, r là bán kính đường tròn nội tiếp của nó.

Khi đó SABC = 6a.4a/2 = 12a2 = pr = 8ar

Từ đó suy ra r = 3a/2

Do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Thể tích khối chóp là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Copyright © 2021 HOCTAP247