Trong các số phức z thỏa mãn \(\left| {{z}^{2}}+1 \right|=2\left| z \right|\) gọi \({{z}_{1}}\) và \({{z}_{2}}\) lần lượt là các số phức có môđun nhỏ nhất và lớn nhất. Khi đó môđun...

Câu hỏi :

Trong các số phức z thỏa mãn \(\left| {{z}^{2}}+1 \right|=2\left| z \right|\) gọi \({{z}_{1}}\) và \({{z}_{2}}\) lần lượt là các số phức có môđun nhỏ nhất và lớn nhất. Khi đó môđun của số phức \(w={{z}_{1}}+{{z}_{2}}\) là

A. \(\left| w \right| = 2\sqrt 2 \)

B. \(\left| w \right| = 2\)

C. \(\left| w \right| = \sqrt 2 \)

D. \(\left| w \right| = 1 + \sqrt 2 \)

* Đáp án

A

* Hướng dẫn giải

Đặt \(z=a+bi \left( a,b\in \mathbb{R} \right)\) thì \(\left| {{z}^{2}}+1 \right|=2\left| z \right| \Leftrightarrow \left| {{\left( a+bi \right)}^{2}}+1 \right|=2\left| a+bi \right|\)

\(\Leftrightarrow \left| {{a}^{2}}-{{b}^{2}}+1+2abi \right|=2\left| a+bi \right| \Leftrightarrow {{\left( {{a}^{2}}-{{b}^{2}}+1 \right)}^{2}}+4{{a}^{2}}{{b}^{2}}=4\left( {{a}^{2}}+{{b}^{2}} \right)\)

\(\Leftrightarrow {{a}^{4}}+{{b}^{4}}+1-2{{a}^{2}}-6{{b}^{2}}+2{{a}^{2}}{{b}^{2}}=0 \Leftrightarrow {{\left( {{a}^{2}}+{{b}^{2}}-1 \right)}^{2}}-4{{b}^{2}}=0 \Leftrightarrow \left( {{a}^{2}}+{{b}^{2}}-1-2b \right)\left( {{a}^{2}}+{{b}^{2}}-1+2b \right)=0\)

\(\Leftrightarrow \left[ \begin{align} & {{a}^{2}}+{{b}^{2}}-1-2b=0 \\ & {{a}^{2}}+{{b}^{2}}-1+2b=0 \\ \end{align} \right.\)

TH1: \({{a}^{2}}+{{b}^{2}}-1-2b=0 \Leftrightarrow {{a}^{2}}+{{\left( b-1 \right)}^{2}}=2\).

Khi đó tập hợp điểm \(M\left( a;b \right)\) biểu diễn số phức z là đường tròn có tâm \({{I}_{1}}\left( 0;1 \right)\), bán kính \(R=\sqrt{2}\), giao điểm của OI (trục tung) với đường tròn là \({{M}_{1}}\left( 0;\sqrt{2}+1 \right)\) và \({{M}_{2}}\left( 0;1-\sqrt{2} \right)\)

\(\Rightarrow w=\left( \sqrt{2}+1 \right)i+\left( 1-\sqrt{2} \right)i \Rightarrow w=2\sqrt{2}i \Rightarrow \left| w \right|=2\sqrt{2}\)

TH2: \({{a}^{2}}+{{b}^{2}}-1+2b=0 \Leftrightarrow {{a}^{2}}+{{\left( b+1 \right)}^{2}}=2\).

Khi đó tập hợp điểm \(M\left( a;b \right)\) biểu diễn số phức z là đường tròn có tâm \({{I}_{2}}\left( 0;-1 \right)\), bán kính \(R=\sqrt{2}\), giao điểm của OI (trục tung) với đường tròn là \({{M}_{3}}\left( 0;\sqrt{2}-1 \right)\) và \({{M}_{4}}\left( 0;-\sqrt{2}-1 \right)\)

\(\Rightarrow w=\left( \sqrt{2}-1 \right)i+\left( -1-\sqrt{2} \right)i \Rightarrow w=2\sqrt{2}i \Rightarrow \left| w \right|=2\sqrt{2}\).

Copyright © 2021 HOCTAP247