A. \(\frac{{72}}{5}.\)
B. 3
C. \(\frac{{72}}{{25}}.\)
D. \(\frac{{18}}{{25}}.\)
C
Gọi A(1;1),B(1;-3),C(4;1) là các điểm biểu diễn của \({{z}_{1}},{{z}_{2}},{{z}_{3}}\) và M là điểm biểu diễn của z.
Từ đó, ta thấy nếu gọi H,K,L là điểm biểu diễn của \({{z}_{4}},{{z}_{5}},{{z}_{6}}\) thì H,K,L chính là hình chiếu của M lên các cạnh BC,CA,AB. Ta cần tìm \(\min (M{{H}^{2}}+M{{K}^{2}}+M{{L}^{2}}).\) Ta có
\(({{a}^{2}}+{{b}^{2}}+{{c}^{2}})(M{{H}^{2}}+M{{K}^{2}}+M{{L}^{2}})\ge {{(aMH+bMK+cML)}^{2}}\ge 4S_{ABC}^{2}\) nên
\(T\ge \frac{4S_{ABC}^{2}}{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\frac{4\cdot {{6}^{2}}}{{{3}^{2}}+{{4}^{2}}+{{5}^{2}}}=\frac{72}{25}.\)
trong đó BC=a=5,CA=b=3,AB=c=4. Đẳng thức xảy ra khi
\(\frac{MH}{a}=\frac{MK}{b}=\frac{ML}{c}\Rightarrow \frac{{{S}_{MBC}}}{{{a}^{2}}}=\frac{{{S}_{MCA}}}{{{b}^{2}}}=\frac{{{S}_{MAB}}}{{{c}^{2}}}\) và M nằm trong tam giác.
Từ đó dễ thấy M tồn tại nên z cũng tồn tại và \({{T}_{\min }}=\frac{72}{25}.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247