Trang chủ Đề thi & kiểm tra Lớp 12 Toán học Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Nguyễn Du lần 2 Cho số thực dương x. Viết biểu thức \(P=\sqrt[3]{{{x}^{5}}}.\frac{1}{\sqrt{{{x}^{3}}}}\) dưới...

Cho số thực dương x. Viết biểu thức \(P=\sqrt[3]{{{x}^{5}}}.\frac{1}{\sqrt{{{x}^{3}}}}\) dưới dạng lũy thừa cơ số x ta được kết quả.

Câu hỏi :

Cho số thực dương x. Viết biểu thức \(P=\sqrt[3]{{{x}^{5}}}.\frac{1}{\sqrt{{{x}^{3}}}}\) dưới dạng lũy thừa cơ số x ta được kết quả.

A. \(P = {x^{\frac{{19}}{{15}}}}\)

B. \(P = {x^{\frac{{19}}{6}}}\)

C. \(P = {x^{\frac{1}{6}}}\)

D. \(P = {x^{ - \,\frac{1}{{15}}}}\)

* Đáp án

C

* Hướng dẫn giải

\(P = \sqrt[3]{{{x^5}}}.\frac{1}{{\sqrt {{x^3}} }} = {x^{\frac{5}{3}}}.{x^{ - \frac{3}{2}}} = {x^{\frac{5}{3} - \frac{3}{2}}} = {x^{\frac{1}{6}}}\)

Copyright © 2021 HOCTAP247