Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có \(\int\limits_{0}^{2}{f\left( x \right)}\text{d}x=9;\int\limits_{2}^{4}{f\left( x \right)}\text{d}x=4\). Tính \(...

Câu hỏi :

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có \(\int\limits_{0}^{2}{f\left( x \right)}\text{d}x=9;\int\limits_{2}^{4}{f\left( x \right)}\text{d}x=4\). Tính \(I=\int\limits_{0}^{4}{f\left( x \right)}\text{d}x\)?

A. \(I = \frac{9}{4}\)

B. I = 36

C. I = 13

D. I = 5

* Đáp án

C

* Hướng dẫn giải

\(\int\limits_0^4 {f\left( x \right){\rm{d}}x}  = \int\limits_0^2 {f\left( x \right)} {\rm{d}}x + \int\limits_2^4 {f\left( x \right)} {\rm{d}}x = 9 + 4 = 13\)

Copyright © 2021 HOCTAP247