A. \(\cos \alpha = \dfrac{{\sqrt 6 }}{2}\).
B. \(\tan \alpha = \dfrac{{\sqrt 6 }}{2}\).
C. \(\cos \alpha = \dfrac{{\sqrt 6 }}{3}\).
D. \(\tan \alpha = \dfrac{{\sqrt 6 }}{3}\)
B
Do \(SA \bot \left( {BACD} \right)\) nên hình chiếu vuông góc của S lên (ABCD) là điểm A, suy ra \(\left( {SC,(ABCD)} \right) = \left( {SC,AC} \right)\)
Ta có
\(SA = \sqrt {4{a^2} - {a^2}} = \sqrt 3 a\,,\,AC = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)
\(\,\, \Rightarrow \tan \alpha = \dfrac{{SA}}{{AC}} = \dfrac{{\sqrt 3 a}}{{a\sqrt 2 }} = \dfrac{{\sqrt 3 }}{{\sqrt 2 }} = \dfrac{{\sqrt 6 }}{2}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247