Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, \(SA \bot \left( {ABCD} \right)\), SD = 2a. Gọi \(\alpha \) là góc giữa SC và mp (ABCD). Chọn khẳng định đúng trong các khẳn...

Câu hỏi :

Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, \(SA \bot \left( {ABCD} \right)\), SD = 2a. Gọi \(\alpha \) là góc giữa SC và mp (ABCD). Chọn khẳng định đúng trong các khẳng định sau ?

A. \(\cos \alpha  = \dfrac{{\sqrt 6 }}{2}\). 

B. \(\tan \alpha  = \dfrac{{\sqrt 6 }}{2}\).

C. \(\cos \alpha  = \dfrac{{\sqrt 6 }}{3}\).

D. \(\tan \alpha  = \dfrac{{\sqrt 6 }}{3}\)

* Đáp án

B

* Hướng dẫn giải

Do \(SA \bot \left( {BACD} \right)\)  nên hình chiếu vuông góc của S lên (ABCD) là điểm A, suy ra \(\left( {SC,(ABCD)} \right) = \left( {SC,AC} \right)\)

Ta có

\(SA = \sqrt {4{a^2} - {a^2}}  = \sqrt 3 a\,,\,AC = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

\(\,\, \Rightarrow \tan \alpha  = \dfrac{{SA}}{{AC}} = \dfrac{{\sqrt 3 a}}{{a\sqrt 2 }} = \dfrac{{\sqrt 3 }}{{\sqrt 2 }} = \dfrac{{\sqrt 6 }}{2}\)

Copyright © 2021 HOCTAP247