A. 1
B. 2
C. 3
D. 4
B
Các điểm \(x={{x}_{0}}\) được gọi là điểm cực trị của hàm số \(y=f\left( x \right)\Leftrightarrow x={{x}_{0}}\) là nghiệm bội lẻ của phương trình y'=0
Ta có \(f'\left( x \right) = 0 \Leftrightarrow \left( {{e^x} + 1} \right)\left( {{e^x} - 12} \right)\left( {x + 1} \right){\left( {x - 1} \right)^2} = 0 \Leftrightarrow \left[ \begin{array}{l} {e^x} + 1 = 0\\ {e^x} - 12 = 0\\ x = - 1\\ x = 1 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \ln 12\\ x = - 1\\ x = 1 \end{array} \right.\)
Trong đó ta thấy x=1 là nghiệm bội hai của phương trình suy ra x=1 không là điểm cực trị của hàm số.
Vậy hàm số có 2 điểm cực trị.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247