Cho hình chóp tứ giác S.ABCD có đáy là hình thang vuông tại A, D, AB=AD=a, CD=2a. Cạnh bên SD vuông góc với đáy \(\left( ABCD \right)\) và SD=a. Tính khoảng cách từ A đến \(\left(...

Câu hỏi :

Cho hình chóp tứ giác S.ABCD có đáy là hình thang vuông tại A, D, AB=AD=a, CD=2a. Cạnh bên SD vuông góc với đáy \(\left( ABCD \right)\) và SD=a. Tính khoảng cách từ A đến \(\left( SBC \right)\).

A. \(\frac{{a\sqrt 6 }}{3}\)

B. \(\frac{{a\sqrt 6 }}{6}\)

C. \(\frac{{a\sqrt 6 }}{{12}}\)

D. \(\frac{{a\sqrt 6 }}{2}\)

* Đáp án

B

* Hướng dẫn giải

Gọi I là trung điểm CD, suy ra ABID là hình vuông

\(\Rightarrow BI=CI=DI\Rightarrow BD\bot BC\).

Mà \(SD\bot \left( ABCD \right)\Rightarrow SD\bot BC\) nên \(BC\bot \left( SDB \right)\Rightarrow \left( SBC \right)\bot \left( SDB \right)\).

Ta có \(\left( SBC \right)\cap \left( SDB \right)=SB\), kẻ \(DH\bot SB\,\ \left( H\in SB \right)\Rightarrow DH\bot \left( SBC \right)\Rightarrow DH=d\left( D,\left( SBC \right) \right)\).

Trong tam giác vuông SDB: \(\frac{1}{D{{H}^{2}}}=\frac{1}{S{{D}^{2}}}+\frac{1}{D{{B}^{2}}}=\frac{1}{{{a}^{2}}}+\frac{1}{{{\left( a\sqrt{2} \right)}^{2}}}=\frac{3}{2{{a}^{2}}}\Rightarrow DH=\frac{a\sqrt{6}}{3}\).

Vậy \(d\left( D,\left( SBC \right) \right)=\frac{a\sqrt{6}}{3}\).

Vì \(DI\cap \left( SBC \right)=C\Rightarrow \frac{d\left( I,\left( SBC \right) \right)}{d\left( D,\left( SBC \right) \right)}=\frac{IC}{DC}=\frac{1}{2}\).

Do AI song song với BC nên AI song song với mặt phẳng \(\left( SBC \right)\)

\(\Rightarrow d\left( A,\left( SBC \right) \right)=d\left( I,\left( SBC \right) \right)=\frac{1}{2}d\left( D,\left( SBC \right) \right)=\frac{a\sqrt{6}}{6}\).

Vậy \(d\left( A,\left( SBC \right) \right)=\frac{a\sqrt{6}}{6}\).

Copyright © 2021 HOCTAP247