Có một khối gỗ là khối lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có \(AB=30\text{ cm}, BC=40\text{ cm}, CA=50\text{ cm}\) và chiều cao \(A{A}'=100\text{ cm}\). Từ khối gỗ này người ta tiệ...

Câu hỏi :

Có một khối gỗ là khối lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có \(AB=30\text{ cm}, BC=40\text{ cm}, CA=50\text{ cm}\) và chiều cao \(A{A}'=100\text{ cm}\). Từ khối gỗ này người ta tiện để thu được một khối trụ có cùng chiều cao với khối gỗ ban đầu. Thể tích lớn nhất của khối trụ gần nhất với giá trị nào dưới đây?

A. \(62500{\rm{ c}}{{\rm{m}}^3}\)

B. \(60000{\rm{ c}}{{\rm{m}}^3}\)

C. \(31416{\rm{ c}}{{\rm{m}}^3}\)

D. \(6702{\rm{ c}}{{\rm{m}}^3}\)

* Đáp án

C

* Hướng dẫn giải

Khi ta tiện khối lăng trụ đứng tam giác \(ABC.{A}'{B}'{C}'\) để được một khối trụ có cùng chiều cao với khối lăng trụ thì khối trụ đó có hai đáy là đường tròn nội tiếp hai tam giác ABC và \({A}'{B}'{C}'\).

Gọi \(p,\text{ }r\) lần lượt là nửa chu vi và bán kính đường tròn nội tiếp tam giác ABC.

Ta có \(p=\frac{AB+BC+CA}{2}=60\text{ cm}, {{S}_{\Delta ABC}}=\sqrt{p\left( p-AB \right)\left( p-BC \right)\left( p-AC \right)}=\sqrt{60.30.20.10}=600\text{ c}{{\text{m}}^{2}}\)

Mà \({{S}_{\Delta ABC}}=pr\Rightarrow r=\frac{{{S}_{\Delta ABC}}}{p}=\frac{600\sqrt{2}}{60}=10\text{ cm}\).

Thể tích khối trụ là \(V=\pi {{r}^{2}}h=\pi {{.10}^{2}}.100=10000\pi \approx 31416\text{ c}{{\text{m}}^{3}}\).

Copyright © 2021 HOCTAP247