Có bao nhiêu số nguyên dươg y để tập nghiệm của bất phươg trình \(\left( {{\log }_{2}}x-\sqrt{2} \right)\left( {{\log }_{2}}x-y

Câu hỏi :

Có bao nhiêu số nguyên dương y để tập nghiệm của bất phương trình \(\left( {{\log }_{2}}x-\sqrt{2} \right)\left( {{\log }_{2}}x-y \right)<0\) chứa tối đa 1000 số nguyên.

A. 9

B. 10

C. 8

D. 11

* Đáp án

A

* Hướng dẫn giải

TH1. Nếu \(y=\sqrt{2}\notin \mathbb{Z}\)

TH2. Nếu \(y>\sqrt{2}\Rightarrow \left( {{\log }_{2}}x-\sqrt{2} \right)\left( {{\log }_{2}}x-y \right)\Leftrightarrow {{2}^{\sqrt{2}}}<x<{{2}^{y}}\). Tập nghiệm của BPT chứa tối đa 1000 số nguyên \(\left\{ 3;4;...;1002 \right\} \Leftrightarrow {{2}^{y}}\le 1003\Leftrightarrow y\le {{\log }_{2}}1003\approx 9,97\Rightarrow y\in \left\{ 2;...;9 \right\}\)

TH3. Nếu \(y<\sqrt{2}\Rightarrow y=1\Rightarrow \left( {{\log }_{2}}x-\sqrt{2} \right)\left( {{\log }_{2}}x-y \right)<0\Leftrightarrow 1<{{\log }_{2}}x<\sqrt{2}\Leftrightarrow 2<x<{{2}^{\sqrt{2}}}\). Tập nghiệm không chứa số nguyên nào

Copyright © 2021 HOCTAP247