Cho hàm số \(y=f\left( x \right)\) nhận giá trị dương và có đạo hàm \({f}'\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(\int\limits_{0}^{x}{\left[ {{f}^{2}}\left( t \r...

Câu hỏi :

Cho hàm số \(y=f\left( x \right)\) nhận giá trị dương và có đạo hàm \({f}'\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(\int\limits_{0}^{x}{\left[ {{f}^{2}}\left( t \right)+{{\left( {f}'\left( t \right) \right)}^{2}} \right]}dt={{\left( f\left( x \right) \right)}^{2}}-2018\). Tính \(f\left( 1 \right)\)

A. 2018e

B. \(\sqrt {2018} \)

C. 2018

D. \(\sqrt {2018} e\)

* Đáp án

D

* Hướng dẫn giải

Lấy đạo hàm hai vế ta được \(2f\left( x \right).{f}'\left( x \right)={{f}^{2}}\left( x \right)+{{\left( {f}'\left( x \right) \right)}^{2}}\Rightarrow {{\left( {f}'\left( x \right)-f\left( x \right) \right)}^{2}}=0\Rightarrow {f}'\left( x \right)=f\left( x \right)\)

\(\Rightarrow f\left( x \right)=k.{{e}^{x}}\)

Thử lại vào đẳng thức đã cho suy ra \({{k}^{2}}{{e}^{2x}}=\int\limits_{0}^{x}{2{{k}^{2}}{{e}^{2x}}dx+2018\Rightarrow k=\sqrt{2018}\Rightarrow f\left( x \right)=\sqrt{2018}{{e}^{x}}}\)

Vậy \(f\left( 1 \right)=\sqrt{2018}e\)

Copyright © 2021 HOCTAP247