Cho hình nón tròn xoay (H) đỉnh S, đáy là hình tròn bán kính R

Câu hỏi :

Cho hình nón tròn xoay (H) đỉnh S, đáy là hình tròn bán kính R, chiều cao bằng h. Gọi (H') là hình trụ tròn xoay có đáy là hình tròn bán kính r (0 < r < R) nội tiếp (H). Xác định r để (H') có thể tích lớn nhất.

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 12 | Giải sbt Toán 12

VH' lớn nhất khi f(r) = r2(R - r) (với 0 < r < R) là lớn nhất. Khảo sát hàm số f(r), với 0 < r < R. Ta có f'(r) = 2Rr - 3r2 = 0, khi r = 0 (loại), hoặc r = 2R/3. Lập bảng biến thiên ta thấy f(r) đạt cực đại tại r = 2R/3.

Khi đó Giải sách bài tập Toán 12 | Giải sbt Toán 12

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải SBT Toán 12 Đề toán tổng hợp ôn tập cuối năm !!

Số câu hỏi: 24

Copyright © 2021 HOCTAP247