Trong không gian Oxyz, cho mặt cầu (S): x^2 + y^2 + z^2 - 2x + 4y + 2z - 19 = 0

Câu hỏi :

Trong không gian Oxyz, cho mặt cầu (S): x2+y2+z2 - 2x + 4y + 2z - 19 = 0 và mặt phẳng (P): x - 2y + 2z - 12 = 0. Tìm tọa độ tâm và bán kính của đường tròn đó.

* Đáp án

* Hướng dẫn giải

Gọi d là đường thẳng qua I và vuông góc với (P). Phương trình của d là

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tâm của (C) là điểm H = d (P). Để tìm H ta thay phương trình của d vào phương trình của (P).

Ta có: 1 + t - 2(-2 - 2t) + 2(-1 + 2t) - 12 = 0

Suy ra t = 1, do đó H = (2; -4; 1).

Bán kính của (C) bằng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải SBT Toán 12 Đề toán tổng hợp ôn tập cuối năm !!

Số câu hỏi: 24

Copyright © 2021 HOCTAP247